

Eventz
Python Programmer's Manual

September 03, 2024
Revision 2.3

 I-Technology Inc. Eventz Python Programmer's Manual

© 2014 - 2024, I-Technology Inc.
Self publishing

ALL RIGHTS RESERVED. This publication contains material protected under International and Federal Copyright Laws
and Treaties. Any unauthorized reprint or use of this material is prohibited. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system without express written permission from the author / publisher.

Document Revision History
Version Date Description of Change Person Responsible

1.0 2017/03/13 Initial Release Bob Jackson

1.1 2017/03/15 Section 1.1 modified Chris Jackson

1.2 2017/03/15 Reformat, added Requirements Bob Jackson

1.3 2017/03/16 Added links to Requirements Chris Jackson

1.4 2017/05/29 Cleanup Bob Jackson

1.5 2017/06/07 Added Chapter 7 headers Chris Jackson

1.7 2017/09/19 Updated, Added State Machine Bob Jackson

1.8 2019/05/09 Changed name to Eventz – Updated with new API Bob Jackson

1.9 2019/09/26 Updated with new code changes Bob Jackson

2.0 2019/10/25 Added Utility section Bob Jackson

2.1 2021/03/11 Documented new features Bob Jackson

2.2 2021/05/06 Updated.Added Examples (Hello World) and Archive Services
section.

Bob Jackson

2.3 2024/08/16 Updates Bob Jackson

C O N F I D E N T I A L

 I-Technology Inc. Eventz Python Programmer's Manual

Table of Contents
1 Introduction.. 1

 1.1 An Eventz Primer..1

2 Requirements..1

3 Fast Track... 2

4 Publishing...2

 4.1 Metadata... 3

 4.2 Data...4

 4.3 Programming.. 4

 4.3.1 Parameters..4

 4.3.2 Publishing...8

5 Subscribing...9

 5.1 Qt.. 9

 5.2 Tkinter...10

 5.3 WxPython... 11

 5.4 Exiting...11

6 Querying The Archive.. 12

7 Logging.. 15

8 Table Driven State Machine... 16

9 Utilities... 18

 9.1 Refresh Archive.. 19

 9.2 updateArchive...19

 9.3 archive...20

 9.4 match...20

 9.5 startApplication...20

 9.6 stopApplication...20

10 Archive Services...21

11 Examples.. 21

 11.1 Hello World...21

Copyright 2019 I-Technology Inc. 3

 I-Technology Inc. Eventz Python Programmer's Manual

1 Introduction
 The Eventz Infrastructure provides a mechanism for inter-module communications and a common data store for
synchronizing data across modules (Event sourcing). It relies on a publish and subscribe paradigm to pass data. It also
archives data in one or more secure locations. The Archive is an indelible, read-only store that is exclusively written by
the Eventz Archivist service. Data is given to a module through subscription and can, in addition, be obtained by
querying a Librarian service. This manual will gave a Python programmer the information necessary to utilize Eventz
using the Eventz API (eventzAPI.py).

 1.1 An Eventz Primer
Eventz Infrastructure is a concept that involves compartmentalizing a software project development into small, logically
distinct modules (microservices) which are easily modified and infinitely more manageable. Thus the completed
software project is constructed in 'building-block style' by implementing microservices.

The basic idea is that the microservices are the only ones permitted to interface with the program. Each module is
created, tested and maintained separately. Each is designed to be responsible for a defined task. Typically, a microservice
will have a limited amount of code for easy maintenance.

Eventz returns to the data encapsulation concept from the early days of computing, by using records with prescribed
fields. These we call Eventz records. They are communicated using Publish and Subscribe methods. Every Eventz
record that is published can be recorded in a Write Once Read Many store (Archive), and there can be more than one
archive each located far apart for safety and security. Changes result in a new read-only records instead of the constant,
and potentially disastrous, record modification. Published Eventz records are indelible and cannot be altered, like being
written on a granite wall onto which everything is 'cast in stone'.

Networking of the Eventz records is provided by a Broker and an Archivist. A Librarian is made available to support
queries of previous Eventz records in the Archive. These services can be located all on one machine or distributed
widely over a network and the internet.

Microservices have the option of creating a local archive that contains those Eventz records that the application
subscribes to. The Eventz API Subscriber object will keep the local archive current.

2 Requirements
Before starting a project the following components need to be in place (download links for programs are provided):

1. RabbitMQ (https://www.rabbitmq.com/download.html) Broker running on a machine accessible through the
network*

2. Depending on the strategy in the next step, download and run Docker (https://www.docker.com)

3. Get Eventz Archivist and Eventz Librarian from Docker Hub or from the GitHub rerpositories.

4. Eventz Archivist and Eventz Librarian running on a machine accessible through the network

5. Python3.12 installed (https://www.python.org/download/releases/3.12/) either globally or in a virtual
environment.

6. Python IDE (PyCharm [https://www.jetbrains.com/pycharm/download/], IntelliJ IDEA
[https://www.jetbrains.com/idea/download/], Eclipse [https://www.eclipse.org/downloads/eclipse-packages/]
with Python plug-in [https://marketplace.eclipse.org/content/pydev-python-ide-eclipse], Idea, etc.)

7. Python Libraries (pyqt5, QT6 [http://pyqt.sourceforge.net/Docs/PyQt6/installation.html])

Copyright 2019 I-Technology Inc. 1

http://pyqt.sourceforge.net/Docs/PyQt5/installation.html
https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
https://www.eclipse.org/downloads/eclipse-packages/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/pycharm/download/
https://www.python.org/download/releases/3.0/
https://www.python.org/download/releases/3.0/
https://www.docker.com/
https://www.rabbitmq.com/download.html

 I-Technology Inc. Eventz Python Programmer's Manual

3 Fast Track
The eventzAPI instantiates a number of objects. In order to simplify the process an ApplicationInitializer object has been
created. It has one method: “initialize()”. The ApplicationInitializer has the following parameters:

• routing_keys – a list of eventz record types that the application subscribes
to.

• publications a list of eventz record types that the application publishes.

• applicationId – a UUID that uniquely identifies this application.

• applicationName – the name of the application.

• path_to_settings – the path to the settings.yaml from which the application
will get initial parameters.

• user_id – a string containing a user id possibly obtained when a user logs
on.

The initialize method instantiates the following objects:

• Publisher: The publisher object handles the publication of event records.
• Subscriber: The subscriber task watches for event records in routing_keys

and passes them to the app.
• Logger: The logger publishes log eventz records (90000002.00)
• LibrarianClient: The librarian client submits queries to the Librarian

service and returns the result set.
• Utilities: The utilities object has many methods that aid the process.
• Parameters: The parameters object contained argument values that are used

by the eventzAPI objects.

4 Publishing
As part of the Eventz paradigm a developer defines the data that is to be shared among modules. This definition follows
a defined structure that includes metadata that is pre-pended to every record. This metadata is part of the search criteria
allowed by the Librarian

Copyright 2019 I-Technology Inc. 2

Figure 1: Sample code for eventz object instantiation

Initialize to get eventz objects

ai = ApplicationInitializer(subscriptions, publications, application_id, application_name,
path_to_settings, user_id)

a_publisher, subscriber, logger, librarian_client, utilities, parameters = ai.initialize()

 I-Technology Inc. Eventz Python Programmer's Manual

 4.1 Metadata
Since Python does not preserve order in objects we describe data using an Enum that defines order. This Metadata
Enum names the elements and their order.

While Python utilized duck typing the records are nevertheless defined in the following table.

Field Data Type Notes

recordType Floating Point #
(2 Decimal
places)

Decimal values are for versioning

e.g. 25000.01

action Integer 0 = Insert, 1 = Update, 2 = Delete

recordId UUID Unique record identifier

link UUID recordId of updated or deleted record

tenant UUID Used to differentiate one entities’ data from anothers.

The Librarian will only reurn 1 tenants’ data from the
Archive.

userId String Name or UUID

Copyright 2019 I-Technology Inc. 3

#
The DS_Metadata Enum provides an index into the fields of
metadata that pre-pend a DS record
#

class DS_MetaData(Enum):
 recordType = 0
 action = 1
 recordId = 2
 link = 3
 tenant = 4
 userId = 5
 publishDateTime = 6
 applicationId = 7
 versionLink = 8
 versioned = 9
 sessionId = 10
 userMetadata1 = 11
 userMetadata2 = 12
 userMetadata3 = 13
 userMetadata4 = 14
 userMetadata5 = 15

 I-Technology Inc. Eventz Python Programmer's Manual

Field Data Type Notes

publishDateTime Date Time datetime.datetime.utcnow().isoformat(se
p='T')

or

datetime.datetime.now(datime.UTC).isofo
rmat(sep='T')

applicationId UUID The module programmer gets a UUID for their
Application

versionLink UUID A link to the original record being versioned

versioned Boolean True if this is generated as a version

sessionId UUID Provides a link between messages that belong to a
session. Useful when multiple copies of an
application are running as each will recogize when
subscribed data resulted from their query.

userMetadata1 User defined Data the programmer wants indexed by the Librarian
for queries

userMetadata2 User defined as above.

userMetadata3 User defined as above.

userMetadata4 User defined as above.

userMetadata5 User defined as above.

 4.2 Data
The programmer provides the record data in a tuple. Fields are string conversions from the underlying type.

 4.3 Programming
The Eventz Framework provides message passing facilities using a publish and subscribe methodology. In order to
integrate the Eventz API into a python microservice a number of things need to happen,

 4.3.1 Parameters
The API works with a RabbitMQ service. In order to connect to this service a number of parameters need to be
set. Some of these parameters are hard coded by the programmer and some are unique to the installation and are
provided in a file (e.g. settings.yaml – the name is passed as the first argument for the application call) which is
outlined below. In addition several parameters are defined in the code

The initialization procedures in eventzAPI draw on data provided in a settings.yaml file. The file is described in
figure 2 below. The parameters in this file need to be set at installation when they are known. The path to this
file is passed as a parameter to the initialization routines and may be hard coded in the application or passed as

Copyright 2019 I-Technology Inc. 4

 I-Technology Inc. Eventz Python Programmer's Manual

a command line parameter. (see example)

Copyright 2019 I-Technology Inc. 5

Figure 3: settings.yaml file contents

brokerExchange: amq.topic
brokerIP: [I.P. of the RabbitMQ broker]
brokerPassword: [The RabitMQ Brokers’ password]
brokerUserName: [The RabbitMQ Brokers’ User Name]
brokerVirtual: [For a Broker in a remote VM the password]
librarianExchange: LIBRARIAN_RPC
librarianExchangeType: direct
librarianQueue: rpc_queue
amqpURL: amqp://ydsvxvfo:zVErILVLnKFTYi1ZOHnUAxlFJZqji-
7i@shrimp.rmq.cloudamqp.com/ydsvxvfo
deviceId: [The device ID. Usually a mac address]
deviceName: [A human readable name identifying the device]
location: [A plain text location identifier]
firstData: [Offset to the data in a message, currently 16]
qt: [If Qt is used for the gui this is true, otherwise false]
localArchivePath: [Path to a local Archive if one is needed]
master_archive: [true if there is a master archive

 false if the service stands alone]
encrypt: [Use encryption? true or false]
pathToCertificate: [If encrypt is true this is path to cert]
pathToKey: [If encrypt is true this is path to key]
pathTocaCert: [If encrypt is true this is path to cacert]
tenant: [UUID identifying the owner of the data. (0 is:

'00000000-0000-0000-0000-000000000000']

Figure 2: Hard Coded Parameters

 applicationId = [UUID Unique to this application]
applicationName = [The name of the application]
applicationUserName = [The user running the app.]

routingKeys = [A list of record types subscribed to by the app.]
publications = [A list of record types published by the app.]

e.g.

applicationId = '35c87ca6-e9e6-4ae3-b10c-942d4508208a'
applicationName = 'Front Desk Microservice v1.0'
applicationUserName = 'I-Tech'
routingKeys = ['6030.00', ‘6040.00’]# Record Types subscribed to
publications = ['6010.00'] # Record Types published

 I-Technology Inc. Eventz Python Programmer's Manual

In the API, the parameters are extracted into a dsParam object by a call to DS_Init.getParams. Note that the fast
track process above creates this parameters object for you.

The DS_Parameters object is defined below.

Copyright 2019 I-Technology Inc. 6

Figure 4: Code initializing the parameters object – executed in
ApplicationInitialivzer.initialize()

dsInit = DS_Init(applicationId, applicationName) # Create the object
parameters = dsInit.getParams('settings.yaml', routingKeys, publications, None)

 I-Technology Inc. Eventz Python Programmer's Manual

Copyright 2019 I-Technology Inc. 7

Figure 5: The DS_Parameters Object Definition

class DS_Parameters(object):
 '''
 Parameters object to be instatiated once and passed as a parameter
 to DSAPI objects and methods
 23 Parameters
 '''

 def __init__(self, exchange, brokerUserName, brokerPassword,
 brokerIP, sessionID, interTaskQueue, routingKeys,

 publications, deviceId, deviceName, location,
applicationId, applicationName, tenant, archivePath,

 master_archive, encrypt, pathToCertificate, pathToKey,
pathToCaCert, qt, brokerVirtual, thePublisher,

 firstData = 16):

RabbitMQ Parameters
 self.broker_user_name = brokerUserName

 self.broker_password = brokerPassword
 self.broker_IP = brokerIP
 self.virtualhost = brokerVirtual
 self.exchange = exchange

 # Encryption Parameters
 self.pathToCaCert = pathToCaCert
 self.pathToCertificate = pathToCertificate
 self.pathToKey = pathToKey
 self.encrypt = encrypt

 # Application parameters
 self.session_id = sessionID

 self.archivePath = archivePath
 self.master_archive = master_archive
 self.deviceId = deviceId
 self.deviceName = deviceName
 self.location = location
 self.applicationId = applicationId
 self.applicationName = applicationName
 self.tenant = tenant
 self.routingKeys = self.subscriptions = routingKeys
 self.publications = publications
 self.firstData =firstData
 self.qt = qt
 self.inter_task_queue = interTaskQueue
 self.the_publisher = thePublisher

 I-Technology Inc. Eventz Python Programmer's Manual

 4.3.2 Publishing
The Eventz API provides a Publisher object in parameters. This object is instantiated once in the application.
The publisher opens and maintains a connection with the Broker. The code below shows how to publish a
record.

The messagePublished value returned by the publish method above is a string showing the actual message
published including the metadata. This will be useful if you need to know the record_id or other metadata field
values assigned by the api.

Table 1: publish method arguments

Field Description

recordType The floating point number that identifies the record.

action 0 = Insert, 2 = Update, 3 = Delete

link UID pointing to recordId of modified record (0 will be changed to:
'00000000-0000-0000-0000-000000000000')

userId Name or UUID indicating who wrote the record.

versionLink UID pointing to recordId of versioned record (0 will be changed to:
'00000000-0000-0000-0000-000000000000')

versioned True if this record generated by a Versioner

sessionID UID of the current session (0 will be changed to:
'00000000-0000-0000-0000-000000000000')

umd1

umd2

umd3

umd4

umd5

Data the programmer wants exposed to the Librarian for queries

dataTuple The record data as a tuple.

Publishing a record will send a copy of the record to all subscribers for the recordType including the Archivist
which will append it to the Archive.

Copyright 2019 I-Technology Inc. 8

 eg.

 from eventzAPI.eventzAPI import Publisher
 .
 logTuple = (deviceID, deviceName, applicationID, applicationName, errorType,

errorLevel, errorAction, errorText)
 messagePublished = dsParam.thePublisher.publish(6010.00, 0, 0, self.userID,

"", "", "", "", "", logTuple)

 I-Technology Inc. Eventz Python Programmer's Manual

5 Subscribing
Every module must subscribe to the data (record types) it needs to know about. If the application doesn't need to know
about events it still needs a subscriber to respond to System Messages.

The Subscriber Factory is an object with a method, ‘makeSubscriber()’, that creates a thread that watches for messages
from the RabbitMQ Broker. Some System Messages (Ping) are handled by the Subscriber Thread, all other messages are
passed to the main thread of the module. The Subscriber Thread uses either QT signals and slots or an inter-task queue to
pass information from the thread to the main application. If the application uses a Gui it will be necessary to break into
the gui’s event loop to service a message from the subscriber task. If Qt is the gui it will require the programmer to
accept QT licensing and to download the requisite files. We use pyqt.py and QT5.

The ApplicationInitializer.initialize() method creates the subscriber thread, starts it and returns the instantiated object:

 5.1 Qt
If the GUI is Qt then, to handle incoming messages passed on from the subscriber task, we need a slot.

We connect to the slot as follows.

Copyright 2019 I-Technology Inc. 9

Figure 6: Qt Slot for Record Handling

 @pyqtSlot(float, str)
 def processMessage(self, record_type, message):

 print('Processing Record Type: %f %s' %(recordType, message))
 if record_type == “xxxx.xx”:
 # Process this record type here

.

.
 elif record_type == “yyyy.yy”;
 # Process this record type here

 .
 .
 .
 .

Figure 7: Subscriber Task connection

self.subscriber.pubIn.connect(self.processMessage) # Connect to signal

 I-Technology Inc. Eventz Python Programmer's Manual

 5.2 Tkinter
If the GUI is Tkinter we need to break into the event loop to test the inter-task queue.

Here the root.after() function calls check_queue every 100 ms.

Copyright 2019 I-Technology Inc. 10

Figure 8: Tkinter event loop interdiction

import tkinter as tk

Class Main():
 .
 .
 def run(self):
 .
 .
 self.check_queue()

 def check_queue(self):

 if not self.parameters.inter_task_queue.empty():
 message = self.parameters.inter_task_queue.get_nowait()
 print(f'Received: {message}')
 self.parameters.inter_task_queue.task_done()
 self.process_message(message[0], message)

 self.root.after(100, self.check_queue)

if __name__ == "__main__":
 root = tk.Tk()
 main = Main(root)
 root.mainloop()
 pass

 I-Technology Inc. Eventz Python Programmer's Manual

 5.3 WxPython
If the GUI is wxPython the following code works

 5.4 Exiting
When the application terminates it needs to close the connections to the Broker and terminate the thread. We do this
by invoking atexit:

Copyright 2019 I-Technology Inc. 11

Figure 9: WxPython event loop interdiction

import wx

Class Main():
 .
 .
 def run(self):
 .
 .
 self.check_queue()

 def check_queue(self):

 if not self.parameters.inter_task_queue.empty():
 message = self.parameters.inter_task_queue.get_nowait()
 print(f'Received: {message}')
 self.parameters.inter_task_queue.task_done()
 self.process_message(message[0], message)

 self.CallLater(100, self.check_queue)

if __name__ == "__main__":
 app = wx.App(False)
 main = Main(None)
 app.MainLoop()
 pass

 I-Technology Inc. Eventz Python Programmer's Manual

Note: atexit() publishes a ‘Stopping’ message to inform any monitor that this application is no longer running.

6 Querying The Archive
The Eventz Librarian serves to give Programmers access to the Eventz Archive. The EventzAPI provides a
LibrarianClient class to be used in formulating and sending queries to the Librarian microservice and receiving results
back. To instantiate the LibrarianClient:

The Librarian Client, when instantiated, accepts dsQuery objects, connects to the Librarian microservice, sends the
query and awaits a response. When the response arrives it closes the connection and returns the response to the caller.
Querys are passed using the librarianClient .call() method detailed in figure 10 below

Copyright 2019 I-Technology Inc. 12

Figure 10: Exiting an application

import atexit

atexit.register(exiting, closeEvent) # Register code to run when program
terminates

def closeEvent(self, QCloseEvent):
 # Publish a Stopping Message
 newUUID = uuid.uuid4()
 stopTime = datetime.datetime.now(datetume.UTC).isoformat(sep='T')
 stoppingTuple = (9000001.00, 0, str(newUUID),
 '00000000-0000-0000-0000-000000000000',
 '00000000-0000-0000-0000-000000000000', self.dsParam.deviceId,
 self.dsParam.deviceName, self.dsParam.location,
 self.dsParam.applicationId, self.dsParam.applicationName,stopTime)

 self.dsParam.thePublisher.publish(stoppingTuple, g.archivePath)

 self.subscriberThread.stop() # Stop the subscriber thread
 print('CLOSING!!!!')

Figure 11: Instantiating a LibrarianClient

 Import eventzapi

 librarianClient = LibrarianClient(self.parameters, logger)

Figure 12: Querying a Librarian

 librarianClient.call(userName, tenant, startDate, endDate, limit,
 queries))

 I-Technology Inc. Eventz Python Programmer's Manual

where:

userName = A string identifying the user

tenant = UUID identifying the tenant. If none then '00000000-0000-0000-0000-000000000000’

startDate = A date filter setting the record date results must follow or equal. yyyy/MM/dd format.

endDate = A date filter setting the record date the results must precede or equal. yyyy/MM/dd format.

The 'limit' argument allows the programmer to limit the number of results returned. A limit value of 0 means all
results will be returned.

queries = A list of one or more QueryTerms

A Query Term is an object as defined in figure 11 below.

An example:

Copyright 2019 I-Technology Inc. 13

Figure 14: A Query Example

 queries = []
 query = QueryTerm("recordType", "EQ", "9000000.0")
 queries.append(query)
 query = QueryTerm("publishDateTime", "LT",

datetime.datetime.utcnow().isoformat(sep='T'))
 queries.append(query)

 limit = 0
 start = datetime.datetime.strptime(‘1955/01/01’, '%Y-%m-%d')
 end = datetime.datetime.utcnow().isoformat(sep='T')
 result = librarianClient.call('Test User', testTenant, start,
 end , limit, queries)
 print('Result retrieved.')
 results = result.decode("utf_8")

Figure 13: The QueryTerm object

class QueryTerm(dict):
 '''
 A term in a query consisting of a field name, an operator and
 the value for the search
 '''
 def __init__(self, fieldName, operator, value):
 self.fieldName = fieldName
 self.operator = operator
 self.value = value

 I-Technology Inc. Eventz Python Programmer's Manual

The result set returned from the call method is a list of qualifying records in tuples.

Process the results by iterating through the list and detecting the closing pattern to determine when done:

Filter criteria are limited to 'and' conditions on values for metadata fields. Conditional operators are:

EQ, GE, GT, LE, LT

Metadata field names are:

1. recordType

2. action

3. recordId

Copyright 2019 I-Technology Inc. 14

Figure 15: Processing a result set

 recordCount = 0
 if results:
 recordSz = ''
 first = True
 gotCloser = False

 for r in results:
 if r != '[':
 if r == ']':
 if gotCloser == False: # Ignore if this is the second] in a row
 newRecordSz = recordSz.replace("'", "")
 newRecordSz = newRecordSz.replace(", ", ",")

 if first == True:
 recordList = newRecordSz.split(',')
 first = False
 else:
 recordList = newRecordSz[1:].split(',')

 print(recordList) # Here at end of record. Print it and clear
 the string
 recordCount += 1
 recordList = []
 recordSz = ''
 gotCloser = True

 else:
 recordSz += r
 gotCloser = False
 else:
 gotCloser = False

 # first = True
 print('Data Transferred from Archive. Got '+str(recordCount)+'records.')

 I-Technology Inc. Eventz Python Programmer's Manual

4. link

5. tenant

6. userId

7. publishDateTime

8. applicationId

9. versionLink

10. versioned

11. sessionId

12. userMetadata1

13. userMetadata2

14. userMetadata3

15. userMetadata4

16. userMetadata5

Note that edits and deletions in the Archive will result in linked transactions that may need to be reconciled. This can be
done by iterating through the list and applying update or delete actions to the records they are linked to. This can be
accomplished by passing the results to dsUtility.updateArchive()

7 Logging
The System Messages include an error reporting record. The EventzAPI includes a Logging class (DS_Logger) that
publishes log messages.

The argument to the constructor is dsParam. Everything DS_Logger needs is in parameters (see Parameters above)

To create a log message:

Copyright 2019 I-Technology Inc. 15

parametersFigure 16: Instantiate a DS_Logger

 Import eventzapi

 logger = DS_Logger(parameters)

 logger.log('I-Tech',100, ‘INFO’, 0, 'Not Really an Error. Just a test.')

 I-Technology Inc. Eventz Python Programmer's Manual

The arguments to the log message are:

1. UserID The User name or UUID identifier

2. errorType A error type defined by the programmer (eg. 404)

3. errorLevel Error level : INFO, WARNING, ERROR, CRITICAL

4. errorAction Action (0 = display, 1 = Email Alert Level 1 .. 3 = Email Alert Level 3, 4 = Page Alert
5 = Syslog Alert

5. errorText A formatted string description of the error

8 Table Driven State Machine
The Table Driven State Machine keeps track of application state and processes asynchronous events according to the
dictates of a State Table.

The state Table is developed in a spreadsheet as shown above.

States are in columns and events are in rows. A machine in a certain state, when confronted with an event, executes the
method in the corresponding cell and sets the next state to the index value in the cell. Illegal event/states are handled by the
invalidEvent method.

Once completed the spreadsheet is saved as a Tab delimited csv. The EventzApi has a method (SMU class, translateTable())
that translates the csv into a stateTable used by the StateMachine class.

The StateMachine class has one method: processEvent() that is called whenever an event needs to be handled by the
StateMachine.

Events may be generated by happenings in the IO loop or in other methods when they are executed. The receipt of a
particular message by the SubscriberClient may trigger an event.

Copyright 2019 I-Technology Inc. 16

Figure 17: State Table Worksheet

 I-Technology Inc. Eventz Python Programmer's Manual

The sample code below initializes a state machine.

Note: The transitions dictionary in the above example maps the table entries to methods. Any method can be referenced
from the state table

To handle messages subscribed to, a processMessage method can call processEvent()

Copyright 2019 I-Technology Inc. 17

Figure 18: Initializing a State Machine

 # Set up State Machine

 pathToTable = s.pathToTable
 self.rt = ''
 self.message = ''
 self.transitions = {
 'processSelection' : self.processSelection,
 'processOffer' : self.processOffer,
 'acceptOffer' : self.acceptOffer,
 'rejectOffer' : self.rejectOffer,
 'processContract' : self.processContract,
 'processTimeout' : self.processTimeout,
 'cleanUp' : self.cleanUp,
 'resetSM' : self.resetSM,
 'invalidEvent' : self.invalidEvent
 }
 self.smu = SMU()
 self.states, self.stateTable = self.smu.translateTable(pathToTable) # Acquire State Table from csv file
 self.sm = StateMachine(self.states, self.transitions, self.stateTable) # Instantiate a State Machine

Figure 19: Sample Transition Method

 #
 # Accept the Offer from Server
 #
 def acceptOffer(self):
 # Prepare message tuple
 acceptedMessage = (self.clientId, self.facilityId, self.arrival, self.departure, self.roomClass, self.roomCount,
 'Accepted')

 # Publish the message
 dsParam.thePublisher.publish(10200.00, 0, '00000000-0000-0000-0000-000000000000',
 '00000000-0000-0000-0000-000000000000', self.applicationUser,
 self.applicationId, '', '', '', '', '', acceptedMessage)

Figure 20: Example Passing Subscriber Event to State Machine

 #
 # Process incoming messages
 #

 @pyqtSlot(float, str)
 def processMessage(self, recordType, message):
 print('Processing Record Type: %f %s' % (recordType, message))

 self.rt = str(int(recordType * 100))
 self.message = message
 mtuple = literal_eval(message)
 if self.rt == '1010000':
 print('Received Room Offer.')

 self.sm.processEvent('Received Offer')

 elif self.rt == '1030000':
.
.

 I-Technology Inc. Eventz Python Programmer's Manual

Similarly, any method launched as a result of a gui event (key click etc.) can/ should be processed by the state machine.

9 Utilities
The DS_Utility Class has several utility methods which can aid in application development. They are detailed in the

following sections. To Instantiate the DS_Utility object:

The arguments are:

• logger = A reference to a DS_Logger object instantiated prior to instantiating DS_Utility

• librarianClient = A reference to a LibrarianClient object instantiated prior to instantiating DS_Utility

Copyright 2019 I-Technology Inc. 18

Figure 22: Instantiating the DS_Utility

from eventzapi import DS_UTILITY

dsu = DS_UTILITY(logger, librarianClient, parameters, userId)

Figure 21: State Table Event Notification from a Gui invoked function

 #
 # Continue Reservation
 #
 def continueReservation(self):
 self.sm.processEvent('Select Button Clicked')

 I-Technology Inc. Eventz Python Programmer's Manual

 9.1 Refresh Archive
The refreshArchive method will refresh a local data store from the remote Archive. This method will make a copy of
the Archive locally in the location specified by dsParam.archivePath.

There are three parameters:

loggedInUser which is a string containing a user name provided by the programmer and typically sourced from a
log-in module.

archivePath which is the path where the local archive should be stored

subscriptions an optional parameter. a list of record types that will populate the local archive. If no value is given the
local archive will contain all record types stored in the remote archive.

 9.2 updateArchive
The updateArchive method updates either a list or local archive. To reconcile all records that have

 been updated or delected. will also remove and records that are not yours by comparing

 the tenant records.

Arguments are:

UserID The User name or UUID identifier

tenantID

recordList An optional argument. A list of record tuples which may be the result set of a Query. In the
absence of this argument the method will operate on the local archive, if there is one.

Events are stored in the archive as strings representing tuples. These tuples consist of metadata followed by the data
payload of the record. The second parameter in the metadata is an integer representing the action of the event.
Actions are:

0 = Insert a new recorded

1 = Update a prior recorded

Copyright 2019 I-Technology Inc. 19

Figure 23: Refreshing a Local Archive

from eventzapi import DS_Utility

dsu = DS_UTILITY(logger, librarianClient, parameters, userId)
dsu.refreshArchive(userId, archivePath, tenant, subscriptions)

Figure 24: Reconciling a Local Archive

from eventzapi import DS_Utility

dsu = DS_UTILITY(logger, librarianClient, parameters, userId)
dsu.updateArchive(userId, tenant, recordList)

 I-Technology Inc. Eventz Python Programmer's Manual

2 = Delete a prior record

The local archive or a result set from a query will contain all the records of the type requested. To provide a local
archive or a result set that contains only the latest updates and removes those records subsequently deleted, use the
updateArchive() method.

 9.3 archive
A function to append a new Event Record to the local Archive. The local archive contains string representations of
the complete record tuples. It is a tab delimited csv file.

Arguments:

record The string containing the record to be written to the local archived

pathToArchive The string containing the path to the local archive

 9.4 match
For use with QTableWidget. it finds a record in the table where the data in a column matches a target value.

Arguments;

table The name of the table

column The column number containing the data to be compared

target The value of the data being searched for.

Returns:

The row number of a match or -1 if no match found.

 9.5 startApplication
Called when an application starts. Generates and publishes a 9000000.00 system message.

Arguments:

aPublisher A publisher object used to publish the message

userId A string representing the user. This data is included in the record metadata

 9.6 stopApplication
Called when an application starts. Generates and publishes a 9000001.00 system message.

Copyright 2019 I-Technology Inc. 20

Figure 25: Start Application method call

dsu.startApplication(aPublisher, userId)

 I-Technology Inc. Eventz Python Programmer's Manual

Argument:

aPublisher A publisher object used to publish the message.

10 Archive Services
To provide persistence an archive is created and used by an Archivist service and a Librarian service. The Archivist
subscribes to all records published to the exchange and writes them to the archive in a tab delimited csv format. The
archive is append only and once written, the records are indelible.

The Librarian service monitors a rpc exchange and responds to queries sent to it by the librarianClient object in any
application. The queries are limited to the fields in the record metadata and only have AND relationships. The Librarian
takes note of the tenantId in the query and will only return records with the proper tenantId. A tenantId of zero (UUID)
will have the Librarian return all records that match the query regardless of tenantId.

The Archivist and Librarian are available at GitHub () as a zip file (EventzArchive.zip). Unzipping this file will create
an EventzArchivist directory. The directory will contain archivist.py and librarian.py as well as ReadMe.txt, a sample
settings.yaml file and EventzArchive.sh and hello_world.py scripts. The ReadMe.txt explains how to launch the
Archivist and Librarian services. The hello_world.py script is a python program that can be run to show eventzAPI in
action.

The EventzArchive.sh script will launch two terminals, one running the archivist.py program and the other running the
librarian.py program. Each terminal will stay open and show a log of its operations. The archivist will create a master
archive (archive.txt) that will contain every published eventz record in a csv format.

11 Examples
The example(s) described below are included in the examples folder in the GitHub repository.

 11.1 Hello World
This Hello World application demonstrates the use of the eventzAPI library. It launches a small window with one

button "Hello World". Pressing this button publishes a Hello World eventz message that is sent to the RabbitMQ

broker specified in the settings.yaml file. The application also subscribes to this message so when the broker

receives it it sends it back to the application. Upon receipt, the application displays the complete message in a

message box. The message consists of a 16 item metadata piece followed by the "Hello World" string as the payload.

To run this program you need python3.8 or higher and eventzAPI (pip3 install eventzapi) and a running RabbitMq
broker.

The command is:

Copyright 2019 I-Technology Inc. 21

Figure 26: Stop Application method call

dsu.stopApplication(aPublisher)

 I-Technology Inc. Eventz Python Programmer's Manual

python hello_world settings.yaml

from eventzAPI.eventzAPI import DS_Logger, RecordAction, ApplicationInitializer

import atexit

import tkinter

from tkinter import ttk, BOTH, RAISED, messagebox

from tkinter.ttk import (Button, Frame, Style)

import time

import sys

'''

 This Hello World application demonstrates the use of the eventzAPI library. It launches a small

 window with one

 button "Hello World". Pressing this button publishes a Hello World eventz message that is sent to

 the RabbitMQ

 broker specified in the settings.yaml file. The application also subscribes to this message so

 when the broker

 receives it it sends it back to the application. Upon receipt, the application displays the

 complete message in a

 message box. The message consists of a 16 item metadata piece followed by the "Hello World"

 string as the payload.

 To run this program you need python3.12 or higher and eventzAPI (pip3 install eventzapi)'''

#

Main Object

#

class Main(ttk.Frame):

 # Object constructor

 def __init__(self, parent, ds_param, user_Id, librarian_client, utilities, subscriber):

 # Attributes

 # Define any attributes needed for the application here

 self.style = Style()

 self.inter_taskQ = ds_param.inter_task_queue

 self.user_Id = user_Id

 # Get the Publisher object to enable publishing DS messages

 self.my_publisher = ds_param.the_publisher

 # Create a DS_Logger object to enable DS Logging which publishes log messages

 my_logger = DS_Logger(ds_param)

 # Create a Librarian Client object to send queries to the Librarian

 # librarian_client = LibrarianClient(ds_param, my_logger)

Copyright 2019 I-Technology Inc. 22

 I-Technology Inc. Eventz Python Programmer's Manual

 # Create a DS_Utility object to allow access to DS specific utility methods

 self.my_utility = utilities

 self.my_utility.start_application(self.my_publisher, self.user_Id) # Publish the fact

 # that this app is starting

 # Instantiate an Archiver (Local)

 archiver = None

 # Create and start a subscriber thread

 # a_subscriber = subscriber

 self.subscriber = subscriber

 # self.subscriber.start()

 # GUI

 ttk.Frame.__init__(self, parent)

 self.root = parent

 self.init_gui()

 self.say_hello()

 # Handle exiting the app.

 atexit.register(self.stopping)

 self.root.protocol("WM_DELETE_WINDOW", self.stopping)

 # Code to execute when the application stops

 def stopping(self):

 print('Stopping! The Subscriber')

 self.subscriber.stop() # Stop the subscriber task too

 print('Stopping! The Application')

 self.root.destroy()

 # Subscriber initialization sample

 def init_gui(self):

 """Builds GUI."""

 self.root.title('Hello')

 self.root.geometry('300x100+10+20')

 self.style.theme_use("default")

 frame = Frame(self, relief=RAISED, borderwidth=1)

 frame.pack(fill=BOTH, expand=True)

 self.pack(fill=BOTH, expand=True)

 self.hello_button = Button(self.root, text = 'Say Hello', command=lambda: self.say_hello())

 self.hello_button.pack(padx = 5, pady = 5)

 pass

 def say_hello(self):

 message = ('Hello World',)

 messagePublished = self.my_publisher.publish(50000.00, message, RecordAction.INSERT.value,

 userId=self.user_Id)

Copyright 2019 I-Technology Inc. 23

 I-Technology Inc. Eventz Python Programmer's Manual

 pass

 def show_response(self, response):

 messagebox.showinfo('Response', response)

#

Main code executed at the beginning

#

if __name__ == "__main__":

 # Set the application parameters

 application_id = '8ea2d01a-ae28-4f16-856e-aa8ccdd34b43' # Identifies the application. Set by

 # developer and only changed with

 # version

 application_name = 'Hello World'

 path_to_settings = sys.argv[1]

 subscriptions = ['50000.00'] # Record Types subscribed to

 publications = ['50000.00'] # Record Types published

 user_id = 'You' # This user name is included in the metadata for any message published

 # Initialize to get eventz objects

 ai = ApplicationInitializer(subscriptions, publications, application_id, application_name,

 path_to_settings, user_id)

 a_publisher, subscriber, logger, librarian_client, utilities, parameters = ai.initialize()

 root = tkinter.Tk() # Set up GUI

 # Instantiate your Main object. This name changes when you refactor

 main = Main(root, parameters, user_id, librarian_client, utilities, subscriber)

 # Process Loop

 root.update()

 while len(root.children) != 0:

 root.update_idletasks()

 root.update()

 # Watch for and handle messages from the Subscriber Task

 if parameters.inter_task_queue.empty() == False:

 message = parameters.inter_task_queue.get_nowait() # Get the message - non blocking

 print('Message Received: {}'.format(message))

 parameters.inter_task_queue.task_done() # Let the queue know the message was handled

 # Put code here to handle the message

 if message[0] == '50000.00':

 main.show_response(message)

 pass

 else:

 time.sleep(.1) # Wait to prevent the polling from using up cpu resources

Copyright 2019 I-Technology Inc. 24

 I-Technology Inc. Eventz Python Programmer's Manual

The settings.yaml file shoild be in the same directory as the application. It not, specify the path to it as a parameter to the
applications.

brokerExchange: amq.topic

brokerIP: codfish.rmq.cloudamqp.com

brokerPassword: 7ZJpQw7rSg1LyHLe0zx1rx2a3O27JktI

brokerUserName: lqcoztwn

brokerVirtual: lqcoztwn

currentUser: 1

deviceId: 58:00:E3:F6:96:50

deviceName: ITECH_TEST_PS

encrypt: false

firstData: 16

master_archive: False

localArchivePath: archive.txt

interTaskQueue: ''

librarianExchange: LIBRARIAN_RPC

librarianExchangeType: direct

librarianQueue: rpc_queue

location: Your location

loginDialog: LogIn.ui

myDBID: c8ff80d5-9b15-48b5-b987-213fa4149b3d

pathToCertificate: /home/you/client/cert.pem

pathToKey: /home/you/client/key.pem

pathTocacert: /home/you/client/all_cacert.pem

qt: false

rmqServer: true

tenant: 00000000-0000-0000-0000-000000000000

Copyright 2019 I-Technology Inc. 25

 I-Technology Inc. Eventz Python Programmer's Manual

 11.2 Seats Demo
To get the Seats Demo as a zip file:

1.Go to the Releases page:

•Users should navigate to the repository's Releases page. This can be done by going to the repository and
clicking on the "Releases" tab, or by going to a URL like:

bash
Copy code
https://github.com/i-Technology/eventzAPI/releases

2.Find the release:

•The user locates the release to which the zip file is attached.
3.Download the zip file:

•Below the description of the release, there will be a section labeled Assets. Under this section, any
attached files will be listed.
•The user simply clicks on the name of the zip file (seats.zip) to download it directly.

Here is an example of what the release page looks like:

Assets
seats.zip <-- The user clicks here to download the zip file
Source code (zip)
Source code (tar.gz)

By clicking on the specific zip file name, the user can download only the zip file without interacting with the
source code or cloning the repository.

Description

This python script demonstrates the use of eventzAPI. It generates a seat map simulating the client for a ticket selling
application. When the user selects a seat, a message is generated that is sent to a publish and subscribe broker
(RabbitMQ) The application subscribes to this message and when it receives it, it changes the state (colour) of the
seat to yellow. selecting other seats will repeat the process. If the user clicks on the ‘Payment’ button within a
timeout period the subsequent message turnaround will cause the seats selected to turn green indicating they have
been purchased by the user. If the timeout expires messaging will be sent that causes the seats to revert to an
‘available’ state (grey) As seats are claimed they are added to a list displayed in a text box at the bottom of the map.

A second instance of this application, running on the users’ machine or another users’ machine, will also subscribe to
these messages and ,when the other user selects a seat, the seat will turn to red indicating that the other user has
claimed the seat and that it is not available to you. Similarly, a released seat will revert to ‘available’ (grey) . Seats
claimed by the user will appear in red on the other users’ map. This will be true for any additional instances of the
application wherever they run.

If an application is launched after other applications have claimed seats it will send a ‘seats request’ message and the
other running applications will publish a ‘seat vector’ message which contains a list of all claimed seats. The new
application receives these seat vectors and updates its’ map accordingly.

Code

The application uses tkinter for the gui. The startup code instantiates a tkinter root, an Auditorium object and calls
the root.mainloop().

Copyright 2019 I-Technology Inc. 26

 I-Technology Inc. Eventz Python Programmer's Manual

The Auditorium object initialization sets up attributes, initializes the eventz environment, and executes a run()
method.

Eventz initialization consists of

1. creating a subscriptions list that lists the eventz record identifiers that the application subscribes to.

2. creating a publication list that lists the eventz record identifiers that the application publishes.

3. setting the application id (a uuid that uniquely identifies this application).

4. setting the application name.

5. setting a user_id.

6. instantiates an Application Initializer.

7. executes the Application Initializer initialize() method that generates the following objects:

1. a Publisher – handles publishing eventz records

2. a subscriber – a task that watches for subscribed to messages from the broker and passes them on
to the main task

3. a logger

4. a librarian client – interfaces with the librarian service when one is used. (Not so here)

5. a utility object – has useful utility methods

6. a parameters object – holds system attributes needed for operation

The run() method:

1. creates a seat vector

2. publishes a seat request – so other running applications will publish their seat vectors

3. creates the gui (seat map)

4. checks the inter-task queue for any subscribed to messages – if a message arrives the process_message()
method handles it. The check_queue method also down counts a purchase period that if zero, returns any
claimed seats.

The application requires access to a RabbitMQ broker. CloudAMQP (https://www.cloudamqp.com/) provides free
brokers that are useful for our purpose. The credentials for an instance of the Broker are placed in the file
settings.yaml as follows:

brokerExchange: amq.topic

brokerIP: <Hosts> e.g.codfish-01.rmq.cloudamqp.com

brokerPassword: <Password>W8WyOQoRRCfAIMw_lExq0h--g38eU7Vy

brokerUserName: <Username>zuklzxqa

brokerVirtual: <Username>zuklzxqa

A complete settings.yaml file is in this repository. use it as an example.

Deployment

 1. Establish a RabbitMQ broker at cloudamqp.com (The free one is fine).

 2. unzip the seats.zip file creating s Seats directory with the relevant files.

Copyright 2019 I-Technology Inc. 27

 I-Technology Inc. Eventz Python Programmer's Manual

 3. Edit the settings.yaml to provide the broker credentials.

 4. With a terminal in the seats directory:

 a) pip install eventzAPI

 b) pip install pika

 c) pip install pyYaml

 d) python seats.py

 e) Buy some seats

 5. With another terminal in the seats directory:

 a) python seats.py

 6. Buy seats in each running instance and see the interaction.

Copyright 2019 I-Technology Inc. 28

